百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 文章教程 > 正文

Paddle OCR文本识别 详细训练教程【Windows下】

xsobi 2024-12-08 19:32 1 浏览

一、下载Paddle OCR

1、通过Gitee下载PaddleOCR

下载链接:https://gitee.com/paddlepaddle/PaddleOCR

2、安装Anaconda环境

下载链接:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D

2.1 安装完成Anaconda环境之后,打开Anaconda Prompt

2.2 创建新的conda环境

# 在命令行输入以下命令,创建名为paddle_env的环境
# 此处为加速下载,使用清华源
conda create --name paddle_env python=3.8 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

2.3 激活刚创建的paddle_env环境

# 激活paddle_env环境
conda activate paddle_env
# 查看当前python的位置
where python

3、安装Paddle OCR依赖的各项环境

3.1 进入到PaddleOCR目录下,即Paddle OCR的项目目录下

cd PaddleOCR
pip install -r requirements.txt

二、数据集制作

1、测试公开数据集 ICDAR2015

1.1 数据集下载

下载链接:https://rrc.cvc.uab.es/?ch=4&com=downloads

1.2 获取标注数据

训练集标注:https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt

测试集标注:https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt

2、数据集格式

2.1 训练集

建议将训练图片放入同一个文件夹,并用一个txt文件(rec_gt_train.txt)记录图片路径和标签,txt文件里的内容如下:

注意: txt文件中默认请将图片路径和图片标签用 \t 分割,如用其他方式分割将造成训练报错。

" 图像文件名                 图像标注信息 "

train_data/rec/train/word_001.jpg   简单可依赖
train_data/rec/train/word_002.jpg   用科技让复杂的世界更简单
...

最终训练集应有如下文件结构:

|-train_data
  |-rec
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...

2.2 验证集

同训练集类似,验证集也需要提供一个包含所有图片的文件夹(test)和一个rec_gt_test.txt,验证集的结构如下所示:

|-train_data
  |-rec
    |- rec_gt_test.txt
    |- test
        |- word_001.jpg
        |- word_002.jpg
        |- word_003.jpg
        | ...

3、字典

PaddleOCR内置了一部分字典,可以按需使用。

ppocr/utils/ppocr_keys_v1.txt 是一个包含6623个字符的中文字典

ppocr/utils/ic15_dict.txt 是一个包含36个字符的英文字典

ppocr/utils/dict/french_dict.txt 是一个包含118个字符的法文字典

ppocr/utils/dict/japan_dict.txt 是一个包含4399个字符的日文字典

ppocr/utils/dict/korean_dict.txt 是一个包含3636个字符的韩文字典

ppocr/utils/dict/german_dict.txt 是一个包含131个字符的德文字典

ppocr/utils/en_dict.txt 是一个包含96个字符的英文字典

三、训练

1、下载PP-OCRv3的预训练模型,并解压到执行目录下

https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar

2、训练指令

# GPU训练 支持单卡,多卡训练
# 训练icdar15英文数据 训练日志会自动保存为 "{save_model_dir}" 下的train.log

#单卡训练(训练周期长,不建议)
python tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy

#多卡训练,通过--gpus参数指定卡号
python -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model=./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy

2.1 configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml 文件详解

此文件配置训练时的参数信息,具体如下所示

Global:
  ...
  # 添加自定义字典,如修改字典请将路径指向新字典
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  ...
  # 识别空格
  use_space_char: True


Optimizer:
  ...
  # 添加学习率衰减策略
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data/
    # 训练集标签文件
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # 修改 image_shape 以适应长文本
          image_shape: [3, 48, 320]
      ...
  loader:
    ...
    # 单卡训练的batch_size
    batch_size_per_card: 256
    ...

Eval:
  dataset:
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data
    # 验证集标签文件
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # 修改 image_shape 以适应长文本
          image_shape: [3, 48, 320]
      ...
  loader:
    # 单卡验证的batch_size
    batch_size_per_card: 256
    ...

2.2 ./pretrain_models/en_PP-OCRv3_rec_train/best_accuracy详解

为PP-OCRv3的预训练模型,由1中解压出来的,执行命令时设置好命令目录。

四、模型评估与预测

1、测试指令

训练中模型参数默认保存在Global.save_model_dir目录下。在评估指标时,需要设置Global.checkpoints指向保存的参数文件。评估数据集可以通过 configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml 修改Eval中的 label_file_path 设置。

# GPU 评估, Global.checkpoints 为待测权重
python -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.checkpoints={path/to/weights}/best_accuracy
# 预测英文结果
python3 tools/infer_rec.py -c configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml -o Global.pretrained_model={path/to/weights}/best_accuracy  Global.infer_img=doc/imgs_words/en/word_1.png

相关推荐

好用的云函数!后端低代码接口开发,零基础编写API接口

前言在开发项目过程中,经常需要用到API接口,实现对数据库的CURD等操作。不管你是专业的PHP开发工程师,还是客户端开发工程师,或者是不懂编程但懂得数据库SQL查询,又或者是完全不太懂技术的人,通过...

快速上手:Windows 平台上 cURL 命令的使用方法

在工作流程中,为了快速验证API接口有效性,团队成员经常转向直接执行cURL命令的方法。这种做法不仅节省时间,而且促进了团队效率的提升。对于使用Windows系统的用户来说,这里有一套详细...

使用 Golang net/http 包:基础入门与实战

简介Go的net/http包是构建HTTP服务的核心库,功能强大且易于使用。它提供了基本的HTTP客户端和服务端支持,可以快速构建RESTAPI、Web应用等服务。本文将介绍ne...

#小白接口# 使用云函数,人人都能编写和发布自己的API接口

你只需编写简单的云函数,就可以实现自己的业务逻辑,发布后就可以生成自己的接口给客户端调用。果创云支持对云函数进行在线接口编程,进入开放平台我的接口-在线接口编程,设计一个新接口,设计和配置好接口参...

极度精神分裂:我家没有墙面开关,但我虚拟出来了一系列开关

本内容来源于@什么值得买APP,观点仅代表作者本人|作者:iN在之前和大家说过,在iN的家里是没有墙面开关的。...

window使用curl命令的注意事项 curl命令用法

cmd-使用curl命令的注意点前言最近在cmd中使用curl命令来测试restapi,发现有不少问题,这里记录一下。在cmd中使用curl命令的注意事项json不能由单引号包括起来json...

Linux 系统curl命令使用详解 linuxctrl

curl是一个强大的命令行工具,用于在Linux系统中进行数据传输。它支持多种协议,包括HTTP、HTTPS、FTP等,用于下载或上传数据,执行Web请求等。curl命令的常见用法和解...

Tornado 入门:初学者指南 tornados

Tornado是一个功能强大的PythonWeb框架和异步网络库。它最初是为了处理实时Web服务中的数千个同时连接而开发的。它独特的Web服务器和框架功能组合使其成为开发高性能Web...

PHP Curl的简单使用 php curl formdata

本文写给刚入PHP坑不久的新手们,作为工具文档,方便用时查阅。CURL是一个非常强大的开源库,它支持很多种协议,例如,HTTP、HTTPS、FTP、TELENT等。日常开发中,我们经常会需要用到cur...

Rust 服务器、服务和应用程序:7 Rust 中的服务器端 Web 应用简介

本章涵盖使用Actix提供静态网页...

我给 Apache 顶级项目提了个 Bug apache顶级项目有哪些

这篇文章记录了给Apache顶级项目-分库分表中间件ShardingSphere提交Bug的历程。说实话,这是一次比较曲折的Bug跟踪之旅。10月28日,我们在GitHub上提...

linux文件下载、服务器交互(curl)

基础环境curl命令描述...

curl简单使用 curl sh

1.curl--help#查看关键字2.curl-A“(添加user-agent<name>SendUser-Agent<name>toserver)”...

常用linux命令:curl 常用linux命令大全

//获取网页内容//不加任何选项使用curl时,默认会发送GET请求来获取内容到标准输出$curlhttp://www.baidu.com//输出<!DOCTYPEh...

三十七,Web渗透提高班之hack the box在线靶场注册及入门知识

一.注册hacktheboxHackTheBox是一个在线平台,允许测试您的渗透技能和代码,并与其他类似兴趣的成员交流想法和方法。它包含一些不断更新的挑战,并且模拟真实场景,其风格更倾向于CT...