百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 文章教程 > 正文

一文搞懂Mysql索引的分类和实现逻辑

xsobi 2024-12-30 07:47 1 浏览

索引介绍

索引(index)在mysql中也叫做键(key)是存储引擎用于快速找到记录的一种数据结构。mysql的索引类似于一本书的“目录”,如果想在一本书中找到某个特定主题,一般会先看书的“目录”,找到对应的页码。

在mysql中,存储引擎用类似的方法使用索引,其现在索引中找到对应值,然后根据匹配的索引记录找到对应的数据行。加入运行下面的查询:


select username from system_user where user_id = 5;


如果在user_id列上建有索引,则Mysql将使用该索引找到user_id为5的行,也就是说,Mysql先在索引上按值查找,然后返回所有包含该值的数据行。

索引可以包含一个或多个列的值。如果索引包含多个列,那么列的顺序页十分重要,因为Mysql只能高效的使用索引的最左前缀列。创建一个包含两个列的索引,和创建两个只包含一列的索引是大不相同的。


索引类型

索引有多种类型,以适应不同的应用场景。Mysql中,索引是在存储引擎层而不是服务器层实现的。所以,没有统一的索引标准,不同引擎的索引工作方式并不一样,也不是所有的存储引擎都支持所有类型的索引。即使多个存储引擎支持同一种类型的索引,其底层的实现也可能不同。

Mysql的索引类型有:B-Tree、哈希(hash index)、空间数据索引(R-Tree)、全文索引、其他索引(一些特殊引擎使用)

B-Tree

存储引擎以不同的方式使用B-Tree索引,性能也各有不同,各有优劣。例如,MyISAM使用前缀压缩技术使得索引更小,但InnoDB则按照原数据格式进行存储。再如MyISAM索引通过数据的物理位置引用被索引的行,而InnoDB则根据主键引用被索引的行

建立在B-Tree结构(从技术上来说是B+Tree)上的索引

B-Tree索引能够加快访问速度,因为存储引擎不再需要进行全表扫描获取需要的数据,取而代之的是从索引的根节点开始进行搜索。根节点的槽中存放了指向子节点的指针,存储引擎根据这些指针向下层查找。通过比较子节点页的值和要查找的值可以找到合适的指针进入下层子节点,这些指针实际上定义了子节点页中值的上限和下限。最终存储引擎要么是找到对应的值,要么该记录不存在。

B-Tree对索引列是顺序组织存储的,所以很适合查找范围数据。

可以使用B-Tree索引的查询类型。B-Tree索引适用于全键值、键值范围或键前缀查找。其中键前缀查找只适用于根据最左前缀的查找。

全值匹配

全值匹配指的是和索引中的所有列进行匹配。

匹配最左前缀

只是用索引的第一列。

匹配列前缀

也可以只匹配某一列的值的开头部门。

匹配范围值

只是用索引的第一列。

精确匹配某一列并范围匹配另外一列

第一列的全匹配,第二列的列前缀匹配。

只访问索引的数据(覆盖索引)

B-Tree通常可以支持“只访问索引的查询”,即查询只需要访问索引,而无需访问数据行。

举例说明:

#创建索引
ALTER TABLE `jr_person`ADD INDEX `name_mobile` (`name`, 'alias',`mobile`) USING BTREE;
#全值匹配
EXPLAIN SELECT * from jr_person where alias = '维修工' and NAME = '刘国军' and mobile = '15837109838';
执行结果
+----+-------------+-----------+-------+---------------+-------------+---------+-------------+------+-------+
| id | select_type | table     | type  | possible_keys | key         | key_len | ref         | rows | Extra |
+----+-------------+-----------+-------+---------------+-------------+---------+-------------+------+-------+
|  1 | SIMPLE      | jr_person | const | name_mobile   | name_mobile | 127     | const,const |    1 |       |
+----+-------------+-----------+-------+---------------+-------------+---------+-------------+------+-------+
1 row in set (0.64 sec)

#匹配最左前缀,即只是用索引第一列
EXPLAIN SELECT * from jr_person where NAME = '刘国军';
执行结果
+----+-------------+-----------+------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table     | type | possible_keys | key         | key_len | ref   | rows | Extra       |
+----+-------------+-----------+------+---------------+-------------+---------+-------+------+-------------+
|  1 | SIMPLE      | jr_person | ref  | name_mobile   | name_mobile | 82      | const |    1 | Using where |
+----+-------------+-----------+------+---------------+-------------+---------+-------+------+-------------+
1 row in set (0.00 sec)

#匹配列前缀
EXPLAIN SELECT * from jr_person where name like '刘%';
执行结果
+----+-------------+-----------+-------+---------------+-------------+---------+------+------+-------------+
| id | select_type | table     | type  | possible_keys | key         | key_len | ref  | rows | Extra       |
+----+-------------+-----------+-------+---------------+-------------+---------+------+------+-------------+
|  1 | SIMPLE      | jr_person | range | name_mobile   | name_mobile | 82      | NULL |  216 | Using where |
+----+-------------+-----------+-------+---------------+-------------+---------+------+------+-------------+
1 row in set (0.00 sec)

#匹配范围值
EXPLAIN SELECT * from jr_person where name BETWEEN '刘' and '张';
执行结果
+----+-------------+-----------+-------+---------------+-------------+---------+------+------+-------------+
| id | select_type | table     | type  | possible_keys | key         | key_len | ref  | rows | Extra       |
+----+-------------+-----------+-------+---------------+-------------+---------+------+------+-------------+
|  1 | SIMPLE      | jr_person | range | name_mobile   | name_mobile | 82      | NULL |  776 | Using where |
+----+-------------+-----------+-------+---------------+-------------+---------+------+------+-------------+
1 row in set (0.04 sec)

#精确匹配某一列并范围匹配另外一列
EXPLAIN SELECT * from jr_person where NAME = '刘国军' and  alias like '维%';
+----+-------------+-----------+------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table     | type | possible_keys | key         | key_len | ref   | rows | Extra       |
+----+-------------+-----------+------+---------------+-------------+---------+-------+------+-------------+
|  1 | SIMPLE      | jr_person | ref  | name_mobile   | name_mobile | 82      | const |    1 | Using where |
+----+-------------+-----------+------+---------------+-------------+---------+-------+------+-------------+
1 row in set (0.00 sec)

#只访问索引的查询
EXPLAIN SELECT name,alias,mobile from jr_person where alias = '维修工' and NAME = '刘国军' and mobile = '15837109838';
执行结果
+----+-------------+-----------+-------+---------------+-------------+---------+-------------+------+-------+
| id | select_type | table     | type  | possible_keys | key         | key_len | ref         | rows | Extra |
+----+-------------+-----------+-------+---------------+-------------+---------+-------------+------+-------+
|  1 | SIMPLE      | jr_person | const | name_mobile   | name_mobile | 127     | const,const |    1 |       |
+----+-------------+-----------+-------+---------------+-------------+---------+-------------+------+-------+
1 row in set (0.00 sec)

关于Explan各个字段的介绍参考这篇博文:Explain命令详解

哈希索引

哈希索引(hash index)基于哈希表实现,只有精确匹配索引所有列的查询才有效。存储的每一行数据,存储引擎对所有的索引列计算一个哈希码(hash code);哈希索引将所有的哈希码储存在索引中,同时在哈希表中保存指向每个数据行的指针。


由于索引本身只存储哈希值,所以索引的结构十分紧凑,这让哈希索引查找速度变得非常快的同时,也产生了一些限制:

1、哈希索引只包含哈希值和行指针,而不存储字段,所以不能使用中银中的值来避免读取行(覆盖索引)。不过,访问内存中的行的速度非常快,所以大部分情况下这一点对应能的影响并不明显。

2、哈希索引数据并不是按照索引值顺序存储的,所以也就无法用于排序。

3、哈希索引不支持部分索引列匹配查找,因为哈希索引始终是使用索引列的全部内容来计算哈希值的。例如,在数据列(A,B)上建立哈希索引,如果查询只有数据列A,则无法使用该索引。

4、哈希索引只支持等值比较查询,包括=,in(),<=>(至于<=> 和<> 是不同的操作,<=>与=类似区别在于null值的判断)

5、访问哈希索引的数据非常快,除非有很多哈希冲突(不同的索引列值却有相同的哈希值),当出现哈希冲突的时候,存储引擎必须遍历链表中所有的行指针,逐行进行比较,知道赵丹所有符合条件的行。

6、如果哈希冲突很多的话,一些索引维护操作的代价也会很高。例如,如果在某个选择性很低(哈希冲突很多)的列上建立哈希索引,那么当从表中删除一行时,存储引擎需要遍历对应哈希链表中的每一行,找到并删除对应行的引用,冲突越多,代价越大。

因为以上种种限制,哈希索引只适用于某些特定场合。而一旦适合哈希索引,则他带来的性能提升将非常显著。


InnoDB引擎不支持hash索引,但是他有一个特殊的功能叫做“自适应哈希索引(adaptive hash index)”。当InnoDb注意到某些索引值被使用的非常频繁时,他会在内存中基于B-Tree索引之上再建立一个哈希索引,这样就让B-Tree索引也具有哈希索引的一些优点,比如快速的哈希查找。这是一个完全自动的、内部的行为,用户无法控制或者配置,不过如果有比较,完全可以关闭该功能。


创建自定义哈希索引。如果存储引擎不支持哈希索引,则可以模拟像InnoDB一样创建hash索引,这可以享受一些哈希索引的遍历,例如只需要很小的索引就可以为超长的建创建索引。

具体思路:在B-Tree基础上创建一个伪哈希索引。这和真正的哈希索引不是一回事,因为还是使用B-Tree进行查找,但是它使用哈希值而不是键值本身进行查找。你需要做的就是在查询的Where子句中手动指定使用的哈希函数。

下边是一个实例,例如要存储大量的URL,并需要根据URL进行搜索查找。如果使用B-Tree来存储URL,存储的内容就会很打,因为URL本身都很长。正常情况下会有如下查询:

select id from url where url = "http://www.phpblog.cn";

若删除原来URL列上的索引,而新增一个被索引的url_crc列,使用CRC32做哈希,就一颗使用下面的方式查询:

select id from url where url = "http:'//www.phpblog.cn" and url_crc = CRC32("http://www.phpblog.cn")

这样做性能会很高,因为mysql优化器会使用这个选择性很高而体积很小的基于url_crc列的索引来完成查找。即使有多个记录有相同的索引值,查找仍然很快,只需要根据哈希值做快速的整数比较就能找到索引条目,然后一一比较返回对应的行。另外一种方式就是对完整的URL字符串做索引,那样会非常慢。


这样实现的缺陷是需要维护哈希值。可以手动维护,也可以用触发器实现。


如果使用这种方式,记住不要使用md5()和SHA1()作为哈希函数。因为这两个函数计算出来的哈希值是非常长的的字符串,会浪费大量的空间,比较时也会更慢。SHA1()和MD5()是强加密函数,设计目标是最大限度消除冲突,但这里并不需要这样高的要求。简单哈希函数的冲突在一个可以接受的范围,同时又能够提供更好的性能。


如果数据表非常大,CRC32()会出现大量的哈希冲突,则可以考虑自己实现一个简单的64位哈希函数。这个自定义函数要返回整数,而不是字符串。一个简单的方法可以使用MD5()函数返回值的一部分作为自定义哈希函数。这可能比自己写一个哈希算法的性能要差,不过这样实现最简单:

select conv(right(md5('http://www.phpblog.cn'),16),16,10) as HASH64;

CONV 可以转变目标数据的进制,上边的案例将md5的后16位,从16进制转换成10进制数字。


索引的优点

索引可以让服务器(数据库服务器)快读地定位到表的制定位置。但这并不是索引的唯一作用,到目前为止可以看到,根据创建索引的数据结构不同,索引也有一些其他的附加作用。

最常见的B-Tree索引,由于是按顺序存储数据,所以MySQL可以用作ORDER BY和GROUP BY操作。因为数据是有序的,所以B-Tree也就会将相关的列值存储在一起。最后,因为索引中存储了实际的值,所以某些查询只使用索引就能够完成全部查询。根据此特性,总结下来索引有如下三个优点:

  1. 索引大大减少了服务器需要扫描的数据量。
  2. 索引可以帮助服务器避免排序和临时表。
  3. 索引可以将随机I/O变为顺序I/O。

索引是最好的解决方案吗?

做引并不总是最好的工具。总的来说,只有当索引帮助存储引擎快速查找到记录带来的好处大于其带来的额外工作时,索引才是有效的。对于非常小的表,大部分情况下简单的全表扫描更高效。对于中到大型的表,索引就非常有效。但对于特大型的表建立和使用索引的代价将随之增长。这种情况下,则需要一种技术可以直接区分出查询需要的一组数据,而不是一条记录一条记录的匹配。比如可以使用分区技术。

相关推荐

MySQL 正则表达式最全介绍

MySQL支持使用正则表达式进行模式匹配和文本搜索。正则表达式提供了一种强大的工具,可以用来匹配和检索字符串中的复杂模式。MySQL中的正则表达式功能主要在REGEXP或RLIKE运算符中使用。1....

正则前面的 (?i) (?s) (?m) (?is) (?im) 是什么意思

Q:经常看见的正则前面的(?i)(?s)(?m)(?is)(?im)是什么意思?...

SQL中的正则表达式

正则表达式通常用来匹配字符,比如在一段字符中截取我们想要的字符,又或者将不想要的字符串替换,或者统计某个或者某几个字符出现的次数,我们都可以使用Oracle提供的正则表达式语法来完成。1.比如,我们在...

学习VBA,报表做到飞 第四章 正则表达式 4.10 贪婪模式与懒惰模式

第四章正则表达式4.10贪婪模式与懒惰模式正则表达式匹配时默认为贪婪模式,也就是尽可能多的匹配。有时候我们需要对符合条件的内容分开匹配,就要用到懒惰模式。...

Python re模块 正则表达式之compile函数

一、应用场景为了重复利用同一个正则对象,需要多次使用这个正则表达式的话,使用re.compile()保存这个正则对象以便复用,可以让程序更加高效。二、使用方法...

几条常用的JavaScript正则表达式

在做项目或者代码编写过程中,一般会遇到验证电话、邮箱等格式是否正确合法的问题。通常我们会使用正则表达式,自己写很麻烦,且正则表达式又不是那么容易记住。所以现在分享几条常用的正则表达式,需要的时候直接复...

C语言中使用正则表达式

POSIX规定了正则表达式的C语言库函数,参见regex(3),我们已经学了很多C函数的用法读者应该具备自己看懂man手册的能力C语言中使用正则表达式一般分为三步:1.编译正则表达式regco...

VBA与Excel入门系列-12-正则表达式(上篇)

系统环境:Windows10...

系列专栏(八):JS的第七种基本类型Symbols

ES6作为新一代JavaScript标准,已正式与广大前端开发者见面。为了让大家对ES6的诸多新特性有更深入的了解,MozillaWeb开发者博客推出了《ES6InDepth》系列文章。CSDN...

EXCEL正则表达式的基础语法

正则表达式的基本概念及用途了解之后,我们就来学习下具体的语法,先以一个简单的例子来讲解。基础语法:比如,A1单元格中有一串字符:aabbccdd...

这几个冷门到你没听过的App,好用到为你打开新世界大门

一些好用的App总被埋没在数以百万计的应用商店中。今天为大家推荐几款Windows、Android、iOS、macOS平台里略显小众、但足够好用的遗珠App。万彩办公大师(Windows)转换Offi...

C/C++知识分享:C语言正则表达式

C语言的正则表达式规则,特此跟大家分享。一、C语言如何使用正则表达式?C语言使用正则表达式的方法很简单,只需要包含正则表达式头文件即可:...

Github工具库(二)

作者:Yunying...

在 JavaScript 中替换所有指定字符 3 种方法

在JS没有提供一种简便的方法来替换所有指定字符。在Java中有一个replaceAll(),replaceAll(Stringregex,Stringreplacement))方法...

正则表达式进阶

正则表达式,是每个程序员的必备的技能1.贪婪匹配和惰性匹配...